Сколько нужно солнечных батарей для дома или другого объекта?

Дом на солнечных батареях: сколько стоит и как рассчитать

Установка автономной фотоэлектрической станции (ФЭС), которая позволит обеспечит бесперебойной электроэнергией среднестатистический дом, украинцу сегодня обойдется в $15-20 тыс. Даже с учетом, что срок эксплуатации системы составляет 25 лет, украинцы пока лишь присматриваются к такой альтернативе традиционному энергообеспечению.

О том, как рассчитать целесообразность и рентабельность установки ФЭС в украинских реалиях рассказывает Александр Прокопенко, директор департамента солнечной энергетики «Солар КВ» ПАО «Квазар».

«Первый вопрос – местоположение и расстояние. Вопрос установки ФЭС в первую очередь возникает у жителей Крыма, Карпат и окрестностей Киева. Это владельцы дач и коттеджей, которые удалены от линий электропередач (ЛЭП) либо испытывают перебои с электроэнергией. Расчет экономической целесообразности установки ФЭС прямо пропорционален удаленности от ЛЭП. Устанавливать ФЭС в качестве альтернативы ЛЭП выгоднее, когда ваше жилье удалено от последних на расстоянии 1 – 1,5 км», – уверяет Александр Прокопенко.

Вторым этапом при установке ФЭС является определение количества фотоэлектрических модулей (ФЭМ) в системе. Для этого необходимо знать энергоемкость дома, номинальную мощность модуля и коэффициент инсоляции для определенной местности.

«Лучшим показателем, определяющим энергоемкость дома, является среднесуточное потребление электроэнергии в кВт*ч. Такие показатели, как установленная мощность объекта или номинальная мощность электрооборудования, не подходят, поскольку не отражают специфику объекта с точки зрения степени его эксплуатации, и при расчете на их основе можно серьезно промахнуться», – поясняет эксперт.

Коэффициент инсоляции характеризует эффективность работы модуля за определенный период времени. Он рассчитывается на основании статистических наблюдений и учитывает влияние солнечных и пасмурных дней, сезонную продолжительность светового дня, снижение эффективности работы ФЭМ на закате и рассвете. Величину коэффициента инсоляции для каждой местности можно найти по карте солнечной инсоляции, публикуемой в специальных изданиях или на сайтах

Третий этап – расчет мощности ФЭС с учетом прогнозируемых потребностей. Для этого достаточно решить несложную арифметическую задачу из нескольких показателей: к примеру, среднесуточная потребляемая мощность объекта – 5 кВт*ч, номинальная мощность фотоэлектрического модуля (ФЭМ) – 160 Вт, период эксплуатации объекта – с мая по октябрь, коэффициент солнечной инсоляции за май-октябрь – 5.

«Для начала рассчитываем среднесуточную выработку энергии одним ФЭМ: 170 Вт * 5 = 850 Вт*ч. Далее считаем необходимое количество солнечных модулей: 5000 Вт*ч / 850 Вт*ч = 5,9-6 модулей», – поясняет Прокопенко. При условии, когда объект будет эксплуатироваться круглогодично, количество ФЭМ определяется исходя из худших погодных условий, т. е. периода времени с наименьшим сезонным коэффициентом инсоляции. «Допустим, что коэффициент солнечной инсоляции за период ноябрь-май равен 4. Тогда среднесуточная выработка энергии одним модулем составит 170 Вт * 4 = 680 Вт*ч, а необходимое количество ФЭМ равно 5000 Вт*ч / 680 Вт*ч = 7,4

8 модулей», – замечает г-н Прокопенко.

Четвертый этап – определение количества аккумуляторных батарей (АБ). В автономных солнечных системах применяются особые батареи – гелиевые, закрытого типа, герметичные, необслуживаемые, со сроком эксплуатации 10-15 лет. «Для расчета общей емкости или количества аккумуляторных батарей в автономной солнечной системе необходимо руководствоваться тем, что глубина разряда не должна превышать 50 %. Для нашего примера общая емкость составит:

1) 5000 Вт*ч + 50 % = 7500 Вт*ч;

2) 7500 Вт*ч / 12 В = 625 А*ч.

Таким образом, общая емкость аккумуляторных батарей с напряжением питания 12 В составит 625 А*ч. Если мы остановим свой выбор на батареях емкостью 200 А*ч, то их необходимое количество составит 625 А*ч / 200 А*ч = 3,1-4 шт. Причем даже значительное округление в бóльшую сторону не будет лишним, поскольку дополнительная емкость снизит глубину разряда на каждом из аккумуляторов, а значит, увеличит срок их службы», – замечает Прокопенко.

Еще один элемент солнечной системы – контроллер заряда (КЗ). Несмотря на то, что его стоимость составляет менее 1 % от общей стоимости системы, он играет ключевую роль в эффективной работе ФЭС. Он предохраняет аккумуляторную батарею от перезаряда и глубокого разряда, тем самым продлевая срок службы батареи.

«Применение «разумного» контроля не только продлевает срок службы батареи, но и позволяет более эффективно использовать энергию, полученную от солнечного модуля, для ее заряда. Прирост эффективности составляет порядка 15-20 %», – уверяет Прокопенко.

Последним «звеном» в солнечной электростанции является инвертор. Этот элемент преобразует постоянное напряжение, поступающее от АБ, в переменное напряжение, поступающее в электрическую сеть объекта. Мощность инвертора, необходимого для конкретного автономного объекта, определяется как суммарная мощность потребления всех электроприборов, которые в нем находятся.

«Важно отметить, что в процессе проектирования ФЭС ключевую роль играет «энергоаудит» системы энергопотребления объекта, то есть нашего дома. Важно оценить функционирования буквально каждой единицы энергооборудования с точки зрения ее энергоэффективности. Как показывает опыт «Соляр КВ», стоимость солнечной системы после проведения «энергоаудита» может сокращаться до 30 %. Учитывая общую стоимость автономной солнечной системы (около $ 15-20 тыс.), это весьма ощутимая экономия».

Выбор и расчет солнечных панелей для дома

Правильно выбранные характеристики и место размещения фотоэлектрических модулей первоочередно влияют на эффективность домашней электростанции. Первое, на чем стоит акцентировать внимание при выборе — это тип кристаллов.

Монокристаллические панели обладают большим КПД, но работают только, когда солнечные лучи попадают под прямым углом 90°, что подходит для экваториальных широт. Второй вариант — поставить на поворотные трекеры, регулирующие угол наклона к Солнцу. При недостаточной или неправильной освещенности высокая вероятность, что вырабатываемого тока не хватит для включения инвертора.

Применяются в основном в промышленных СЭС, где важна максимальная выработка электричества на ограниченной территории.

В домашних электростанциях более распространенные поликристаллические модули. Отлично работают под любым наклоном к Солнцу, производят электричество даже из отраженного света. У них меньше порог автоматического запуска.

Поликристаллические панели дешевле в среднем на 2-3% монокристаллических. Хоть и разница цен между ними не существенна, для широт Украины вторые все же будут выгоднее

Бренд — не менее важный критерий выбора. Лучше выбирать из «Tier1» — ТОП-10 мировых производителей. Все 10 компаний реализуют полный цикл производства солнечных батарей и обеспечивают контроль качества на каждом этапе.

Согласно стандартам Tier1, за первый год эксплуатации фотомодуль не должен потерять больше 0,8% мощности, а за первые 25 лет — больше 20%. Фактически же у отдельных брендов Tier1 батареи сохраняют 80% номинала на протяжении 30 лет службы.

Читать еще:  Печь-экономка своими руками (фото)

У менее рейтинговых компаний этот показатель не такой высокий, и соответственно больше процент потерь, а это не выработанная и не проданная энергия. Со временем недовыработка электричества будет расти, а с ней и потеря дохода. Если для Вас важно, чтобы батарея долго и качественно работала, то лучше выбирайте Tier1.

Определившись с брендом, посчитайте мощность Вашего проекта, но помните, что она ограничена.

Чем обусловлена мощность солнечной электростанции

Здесь играет важную роль ограничение электроснабжения на домохозяйство и площадь кровли. Дело в том, что каждом доме и квартире ограничена нагрузка на сеть. Обычно это 5-10 кВт. Это вызвано тем, что отдельный участок улицы или квартал обслуживает собственный распределительный энергоузел, рассчитанный на определенную суммарную максимальную нагрузку.

Выработанное по «зеленому тарифу» электричество прежде всего идет на снабжение домашней сети, и его количество не должно превышать ограничение по электропотреблению. Например, если РЭС отвели Вам только 7 кВт, мощность домашней СЭС не должна превышать этот показатель.

Больше просто не разрешат установить. Аварии, скорее всего, не случится но возникнут другие сложности со стороны энергопоставляющей компании, потому максимально допустимая выработка ограничивается инвертором. Он не пропустит в сеть больше номинала.

Для увеличения максимальной нагрузки Вам придется договариваться с РЭС, чтобы те провели на Ваш участок дополнительную линию с другого распределительного узла (при наличии технической возможности, конечно) и, скорее всего, за это придется доплачивать.

Мощность системы определяется номиналом инвертора, а не суммарной мощностью фотомодулей. Например, с тем же ограничением Вам никто не запрещает поставить 7кВт инвертор и панели на 10 кВт. В таком случае будет считаться, что мощность системы 7кВт.

В украинских широтах солнечные батареи почти никогда не работают на максимум, разве что посреди ясного дня летом. Обычно это 30-50% от номинала. Читайте про производительность тут.

Например, если у Вас стоит станция на 7 кВт. В сеть поступает в среднем 2-3 кВт в час. Если расширить мощность до 10 кВт, средняя выработка составит 4-5 кВт. С другой стороны, посреди ясного летнего дня будет производиться 8 кВт, а то и всех 9 кВт. При этом в сеть поступит только 7 кВт. В украинских широтах такая аномально высокая выработка вероятна несколько дней в году по 2-3 часа в сутки.

Инвертор «срежет» мощность выше своего номинала. В таких условия кратковременно будут небольшие потери, но в перспективе Вы продадите в энергосистему (или энергоснабжающей организации) до 40% больше электричества.

Зная ограничение электроснабжения, несложно посчитать, сколько модулей Вам понадобится.

Расчет мощности домашней СЭС

Все панели, из которых собирается массив, стандартизированы по габаритам и номиналу. При 260-290 Вт мощности, их площадь варьируется около 1,5 — 1,7 м2.

Маломощные фотомодули делаются из производственного брака, потому их сложнее купить. Если Вы встретите номиналы 50Вт, 100Вт или 150Вт, помните, что их качество скорее всего ниже стандарта, даже у топовых производителей.

Средний пример станции на 8кВт

Для расчетов возьмем стандарт класса Tier1. Для 8кВт станции, Вам понадобятся панели в количестве:

8000 Вт / 275 Вт/шт ≈ 29,09 шт

При округлении в большую сторону получится 30шт. Фактическая мощность станции составит:

275Вт/шт. × 30 шт. = 8 250 Вт.

Учитывая, что даже летом она будет работать на 50-60% от номинала, разница — не критичная.

Рассчитаем площадь кровли под электростанцию:

1,63 м2/шт. × 30 шт. = 48,9 м2.

Такая относительно небольшая конструкция легко разместится на любой крыше. А теперь рассчитаем максимально допустимый вариант.

Максимальный пример на 30кВт

По условиям зеленого тарифа, мощность домашней СЭС не должна превышать 30кВт. Чтобы соорудить такую станцию понадобится тех же панелей, что и в предыдущем примере:

30 000 Вт / 275 Вт/шт. = 109 шт.

Для их размещения необходима площадь:

1,63 м2/шт. × 109 шт. = 177,67 м2.

Важно понимать, что в расчетах отображена полезная площадь крыши. Даже если у Вас она намного больше, не факт, что ее хватит для размещения всех модулей.

Здесь важно не только количество квадратных метров, а и технические параметры: высота, форма, наклон. Не забывайте и о том, что это почти 2 тонны веса. Не каждая кровля выдержит такую гигантскую и увесистую конструкцию.

Какая должна быть крыша для СЭС?

При планировании, помимо габаритов кровли, учитывайте ее форму и угол наклона. Так как Украина находится в северном полушарии, больше всего света получает южная сторона. На ней и размещайте фотоэлектрические модули. Больше об этом читайте в статье про эффективность солнечных панелей.

Идеи для размещения фотомодулей

При наземной установке нужно в обязательном порядке обладать значительными площадями. Мы этот вариант пока рассматривать будем позже, а сейчас рассмотрим более практичные решения.

Если одной крыши мало — перенесите часть электростанции на другие объекты, например, тот же гараж или хозяйственные постройки. Правда для этого понадобится инвертор на два MPPT выхода (минимум).

Это хороший вариант при близком расположении от дома, так как в батареях вырабатывается постоянный ток, и с увеличением длины кабеля увеличиваются потери электричества. Потому, крайне желательно все размещать компактно.

При нехватке нескольких квадратных метров, соорудите дополнительный навес (если это возможно). Так Вы не нарушите эстетику дома и решите вопрос недостающей площади.

Простые и популярные решения

Самый простой вариант — соорудить отдельный навес, состоящий из нескольких опор и крыши из панелей, а пространство под ним использовать в качестве паркинга или других целей.

На фото пример того, как «выкрутиться из ситуации», если крыша дома не подходит для размещения.

Из-за того, что наклоны обеих участков отличаются — понадобится инвертор на 2 MPPT трекера.

Вот еще несколько примеров практического использования полезной площади:

Веранда с крыльцом суммарной мощностью около 7 кВт.

Функциональный навес для автомобиля — 2,5 кВт.

Панели на фасаде

Размещение панелей на фасаде здания целесообразно только при отсутствии иных вариантов, как на этом фото, где крыша повернута не в солнечную сторону, а свободного места для строительства площадей попросту нет.

Единственный недостаток: из-за такого наклона эффективность летом уменьшится, зато зимой, когда Солнце низко, она будет лучше, чем на крыше.

При планировании старайтесь не допускать таких ошибок, как на фото, где антенна кидает тень прямо на панель.

Благодаря таким идеям, Вы не ограничены в планировании мощности СЭС, за исключением рамок самого «зеленого тарифа».

Читать еще:  Пенополистирол: чем шпаклевать материал?

Так, еще на этапе планирования Вы рассчитаете удобный наклон и размещение навеса, оптимально спроектируете его площадь.

Расчет солнечной батареи — мощность, емкость и выбор инвертора

Обновлено: 13 августа 2019

Расчет солнечных батарей для частного дома или дачи

Регионы: Москва, Новосибирск, Краснодар.

Установка гелиопанелей для энергопитания дома требует тщательного предварительного расчета. Возможности подобного оборудования ограничены и в значительной степени зависят от внешних условий:

  • географическое положение региона
  • климатические и погодные условия
  • продолжительность светового дня

Производительность комплекса всегда зависит от внешних условий. Один и тот же набор оборудования в разных условиях демонстрирует отличающиеся друг от друга результаты, поэтому в каждом случае потребуется специализированный расчет. Его можно заказать в специализированных организациях или выполнить самостоятельно. Рассмотрим, как рассчитать солнечные батареи для дома, чтобы получить эффективную установку по производству электроэнергии.

Потребности в электроэнергии

Расчет солнечных батарей для дачи или частного дома надо начинать с определения потребностей в электроэнергии. Эту величину можно узнать из показаний счетчика электроэнергии или подсчитать по энергопотреблению каждого потребителя и времени его использования. Второй вариант гораздо сложнее и чреват возникновением ошибок, поэтому правильнее руководствоваться показаниями счетчика.

Количество солнечных дней

Вторым действием станет определение количества солнечных дней в регионе, продолжительности светового дня по сезонам. В приложениях СНиП есть карта инсоляции регионов России, в которой дается количество солнечной энергии в разных участках страны. По ней определяется среднегодовое количество доступной энергии для заданного города или региона. Это важный показатель, демонстрирующий верхний предел возможностей оборудования в данном месте.

Определив эти значения можно начинать расчет мощности солнечных батарей для дома.

Расчет мощности солнечных батарей

Начиная расчет солнечной батареи, следует учесть, что световой день — это показатель преимущественно географический. Выполняя расчет солнечных панелей для дома, надо исходить из реального производства энергии, которое в утренние и вечерние часы значительно падает из-за снижения интенсивности свечения солнца.

Обычно в летнее время максимальная производительность панелей отмечается в период с 9 до 16 часов, а в остальное светлое время суток они выдают 20-30 % своей мощности. Кроме того, существенные коррективы вносят погодные условия, которые способны снизить выработку энергии вдвое или больше. Поэтому реальную производительность солнечной батареи следует принимать максимум в половину указанной в паспорте и рассчитывать количество энергии на 70 % продолжительности светового дня.

Специалисты рекомендуют вообще не учитывать в расчетах утренние и вечерние часы, отнеся их к необходимому запасу прочности системы. Кроме того, необходимо учитывать самые неблагоприятные условия и прибавлять к ним некоторый процент воздействия отрицательных факторов.

Это не будет излишним, поскольку всегда оказываются неучтенными некоторые детали, значительно меняющие условия работы и требуемую мощность солнечных батарей на квадратный метр.

Формула расчета солнечных панелей выглядит следующим образом:

Pсп=Eп*k* Pинс / Eинс,

  • где Pсп — мощность солнечной панели
  • Eп — суточное количество энергии, необходимой для питания всех потребителей дома
  • K — коэффициент потерь, обычно равен 1,2-1,4
  • Pинс — мощность инсоляции на земной поверхности
  • Eинс — табличное значение среднемесячной инсоляции в данном регионе

Используя эту формулу, находят требуемую мощность солнечной батареи на 1 кв. метр. По мощности определяется, сколько солнечных батарей нужно для частного дома, расчет количества панелей производится путем деления общего значения на параметры одного элемента.

Расчет ёмкости аккумуляторной батареи для солнечных панелей

Емкость аккумуляторов должна соответствовать производительности солнечных панелей и обеспечивать потребление дома как в светлое, так и в темное время суток. Необходимо ограничить емкость батарей, чтобы не тратить лишние деньги. Однако, необходимо иметь определенный запас емкости, поскольку полностью разряжать аккумуляторы нельзя.

Величина допустимого разряда у каждого вида АКБ своя, например, заряд автомобильных батарей можно расходовать только до 50 %. Оптимальный вариант — наличие суточного запаса энергии. Больше иметь нецелесообразно, так как это сильно увеличит стоимость системы. Меньший запас может оставить жителей дома без электроэнергии при возникновении неблагоприятных внешних условий.

Кроме того, надо учесть КПД батарей, инвертора и возможность плохого функционирования солнечных панелей из-за плохой погоды, занесения поверхности фотоэлементов снегом и т.п. Эти потери принято оценивать в 40 %, но к ним надо еще прибавить КПД контроллера.

Это важно, так как некоторые модели практически не воздействуют на процесс передачи энергии, но более дешевые модели способны снизить передачу на 20 %.

Расчет и выбор инвертора

Расчет солнечной электростанции завершается выбором мощности инвертора. Это устройство, преобразующее постоянный ток от аккумуляторных батарей, в переменное напряжение со стандартными параметрами 220 В 50 Гц.

Простейший вариант расчета мощности инвертора — определение суточной потребности жилища в электроэнергии (по показаниям счетчика), которому и должен соответствовать инвертор. Для учета возможных форс-мажорных ситуаций считают пиковую нагрузку, умножая суточное потребление на коэффициент 1,3.

Есть другой вариант расчета инвертора — по производительности солнечных панелей и емкости аккумуляторов. Он привязывает результат к имеющемуся оборудованию, но оно изначально так же рассчитывалось по суточному потреблению энергии, поэтому оба варианта практически равноценны. На этом расчет солнечной электростанции для дома можно считать завершенным и переходить к непосредственному созданию комплекта.

Выбор готового инвертора, как и в случае с аккумуляторами, производится путем подбора устройства по полученным данным. Рекомендуется выбирать инвертор, обладающий несколько увеличенными показателями на 10-15 %, чтобы компенсировать падение производительности со временем.

Стоимость солнечных батарей и аккумуляторов

Цены панелей и аккумуляторов имеют широкий диапазон, обусловленный множеством вариантов конструкции, мощности и прочих параметров. Однако, рассчитывать расходы следует только по расчетному составу солнечной электростанции, включающему в себя вполне определенные виды оборудования.

Внимание! Приобретение аппаратуры по отдельности нецелесообразно, поскольку в результате можно получить разнородное оборудование, не способное работать в связке. Правильнее приобретать готовые комплексы, составленные из полностью совместимого оборудования.

Начальная стоимость станции составляет 5 тыс. руб. и увеличивается пропорционально мощности, емкости АКБ и прочим возможностям комплекса. Верхнего предела практически не существует, так как количество солнечных панелей может быть бесконечно.

Цены на оборудование

Выполнить самостоятельный расчет солнечной станции непросто. Необходимо участие опытного специалиста, или заказ на выполнение проектных работ в специализированной организации. Однако, существует вполне простой и бесплатный вариант — расчет солнечной электростанции для дома онлайн. Используется калькулятор солнечной электростанции, которых немало в сети интернет. Для получения результата надо лишь подставить в соответствующие окошечки программы свои данные и практически мгновенно получить результат. Рекомендуется пару раз продублировать расчет на других сайтах, чтобы использовать среднее значение.

Читать еще:  Подключение батарей отопления: схемы

Видео с примером расчета

Сколько нужно солнечных батарей для дома?

Сколько нужно солнечных батарей для дома или квартиры?

Хотите верьте, хотите нет, но самый популярный вопрос, который мы слышим от наших клиентов это сколько нужно солнечных батарей для моего дома, реже квартиры. Ну, а далее идут вариации, например:

1) Какое количество солнечных батарей необходимо, для отопления дома?

Конечно, приятно понимать, что в Украине люди действительно стремятся быть энергетически независимыми, но к сожалению наши дома пока ещё плохо или вообще не утеплены и эффективность современных pv панелей пока не позволяют решить данную задачу полноценно. Самый продуктивный период работы солнечной станции в Киеве и вообще в нашей стране это апрель — сентябрь, именно в этом промежутке времени станция продуцирует 70% от годовой выработки электроэнергии. На отопительный период остаётся всего 30%, выходит так, что когда нам больше всего надо энергии, то есть зимой, у нас её на самом деле очень мало и всё это связанно с маленьким количеством солнечных дней.

Наглядный пример: хорошо утеплённый дом (по меркам Украины) площадью 100 м², потребляющий 5 кВтчас при температуре на улице – 22 °С, для поддержания в доме + 20 °С потребует около 120 кВт в сутки тепловой энергии. Чтобы получить такую величину энергии даже летом нам потребуется электростанция мощностью 20-25 кВт, это 74-90 штук солнечных панелей. Зимой же станция такой мощностью в среднем за день будет выдавать свой номинал те же 20 – 25 кВт. Отсюда напрашивается вывод, что пока солнечными элементами отопить дом не удастся.

2) Сколько надо солнечных панелей в частном домостроении, чтобы продавать электроэнергию и быстро вернуть вложенные инвестиции?

Согласно закону о «зелёном тарифе» максимальная мощность станции, которая может вырабатывать электроэнергию и будет подключена к общей энергосети составляет 30 кВт, ранее эта цифра была всего 10 кВт. Практические советы как рассчитать на листочке сколько батарей вы сможете разместить на крыше вашего дома:

  • выберите на крыше свободные для размещения участки, которые не затеняются и имеют направления юг (лучшее), запад, восток (на 15% меньше выработка по сравнению с южным направлением. Можно использовать и северный кат крыше, но у него продуктивность будет на 40-45% ниже чем у южного.
  • после того как выбрали места размещения, замеряйте их и полученную площадь разделите либо на 1,6 м² или же на 2 м², таким образом вы на 90% подсчитаете кол-во солнечных модулей, которые поместятся на кровле. Указанные ранее размеры являются наиболее популярными в Украине и чаще всего применяются при строительстве солярных установок.
  • если мы знаем кол-во солнечных элементов, теперь легко можно рассчитать мощность будущей электростанции, путём умножения кол-ва штук на их мощность. На сегодняшний день самыми распространёнными считаются мощности панелей 270-285 Вт (как правило размер 1640 мм на 995 мм), реже используются 310-330 Вт (чаще всего размер 1960 мм на 996 мм).

Пример: площадь крыши 100 м², мы выбрали солнечные батареи производительностью 275 Вт (вспоминаем, что площадь у таких модулей 1,6 метра квадратных). Получаем следующую формулу, которая позволяет нам рассчитать сколько солнечных батарей нужно для дома – (100 м²/1,6 м²) = 62,5 (округляем в меньшую сторону) * 275 Вт =17 050 Вт или 17 кВт.

3) Сколько надо установить солнечных батарей на крыше своего дома, чтобы полностью отключиться от общей энергосети?

Вопрос очень гибкий и рассуждать на эту тему можно часами, но чтоб хоть как-то развеять розовые очки от жаждущих полной энергетической независимости, приведу ниже способ подсчёта для выше заданного вопроса.

Первое, что нужно понимать, сколько электроэнергии дом потребляет в час. Для эксперимента, запишите показания счётчика и на один час включите все электроприборы. После того как пройдёт час запишите получившиеся данные, потом от первоначальных данных отнимите полученные результаты после эксперимента, у вас получиться разница, которая покажет вам пиковую нагрузку на будущую автономную станцию. К примеру, у вас получилось 5 кВт/час – это означает, что ваша станция должна в пиковый момент выдать вам из своих резервов именно эту цифру. Далее, рассчитываем сколько электроэнергии вам необходимо в день, проще всего взять ваши квитанции за свет за последние 12 месяцев, суммировать количество кВт/час разделить на 365 дней в году и умножить на 1,2 (поправочный коэффициент, иногда за день потребляется энергии больше иногда меньше). Полученная цифра – это среднее кол-во кВт/час за день, допустим, что это 10 кВт/час.

Теперь начинаем строить станцию

Мы знаем, что в день мы потребляем 10 кВт/час электроэнергии, значит солнечные батареи, которые нам предстоит установить должны каждый день собирать такое кол-во электроэнергии. Чтобы собирать столько электроэнергии в любой день года независимо от сезона, мы должны установить станцию мощностью 10-12 кВт. Почему берём с запасом, всё из-за того, что зимой очень мало солнца и нам как не крути даже в самую снежную погоду надо собрать 10 кВт/час. Станция мощностью 10 кВт это 37 панелей мощность 270 Вт или 30 панелей мощностью 330 Вт. Первое значение получено, но это ещё не всё, теперь нам надо подобрать аккумуляторные батареи которые смогут с аккумулировать, то есть принять в себя такое кол-во электричества. Если брать аккумуляторы технологии AGM или Gel, ёмкостью 250 ампер/часов нам потребуется 8 штук, таких устройств. Если же брать литий-железо-фосфатные (LiFePO₄) АКБ потребуется 4 штуки. Плюс «изюминка на тортик», для того, чтобы это всё работало корректно необходимо подобрать инвертор способный в пиковый момент преобразовать 5 кВт постоянного тока в переменный, а это очень непростая задача.

Резюмируя всё написанное ранее, могу сказать следующее, что автономная солнечная электростанция с такими параметрами обойдётся покупателю от 17 тысяч долларов до 25 тысяч в зависимости от выбранного оборудования, срок окупаемости составит от 12 лет.

Итак, для того, чтобы ответить на вопрос сколько надо солнечной энергии вашему дому, вы изначально должны понимать какую задачу хотите решить и честно признаться себе сколько готовы инвестировать в альтернативную энергетику.

Ссылка на основную публикацию
Adblock
detector