Расчет обогрева помещения (формула)

Расчет количества радиаторов отопления по площади и объему помещения

При замене батарей или переходе на индивидуальное отопление в квартире встает вопрос о том, как рассчитать количество радиаторов отопления и число секций приборов. Если мощность батарей окажется недостаточной, в холодное время года в квартире будет прохладно. Избыточное количество секций не только ведет к ненужным переплатам – при системе отопления с однотрубной разводкой жильцы нижних этажей останутся без тепла. Рассчитать оптимальную мощность и количество радиаторов можно, опираясь на площадь или объем комнаты, учитывая при этом особенности помещения и специфику разных видов батарей.

Расчет по площади

Наиболее распространенной и простой методикой является способ расчета мощности приборов, требуемой для обогрева, по площади обогреваемого помещения. Согласно усредненной норме, на отопление 1 кв. метр площади требуется 100 Вт тепловой мощности. В качестве примера рассмотрим комнату, имеющую площадь 15 кв. метров. Согласно данному методу, для ее обогрева потребуется 1500 Вт тепловой энергии.

При использовании данной методики нужно учесть несколько важных моментов:

  • норма в 100 Вт на 1 кв. метр площади относится к средней климатической полосе, в южных регионах для обогрева 1 кв. метра помещения требуется меньшая мощность – от 60 до 90 Вт;
  • для областей с суровым климатом и очень холодной зимой на обогрев 1 кв. метра требуется от 150 до 200 Вт;
  • метод подходит для помещений со стандартной высотой потолков, не превышающей 3 метра;
  • способ не учитывает потери тепла, которые будут зависеть от расположения квартиры, количества окон, качества утепления, материала стен.

Методика расчета по объему помещения

Способ расчетов с учетом объема потолка будет более точным: он учитывает высоту потолков в квартире и материал, из которого сделаны наружные стены. Последовательность вычислений будет следующей:

  1. Определяется объем помещения, для этого площадь комнаты умножается на высоту потолка. Для комнаты площадью 15 кв. м. и высотой потолка 2,7 м он будет равен 40,5 кубометрам.
  2. В зависимости от материала стен на обогрев одного кубометра воздуха тратится разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель равен 34 Вт, для панельного дома – 41 Вт. Значит, полученный объем нужно умножить на 34 или на 41 Вт. Тогда для кирпичного здания на обогрев комнаты в 15 квадратов потребуется 1377 Вт (40,5*34), для панельного – 1660, 5 Вт (40,5*41).

Корректировка результатов

Любой из выбранных способов покажет лишь приблизительный результат, если не будут учитываться все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на приведенные ниже коэффициенты, среди которых нужно выбрать подходящие.

В зависимости от размеров окон и качества утепления через них помещение может терять 15–35% тепла. Значит, для вычислений мы будем использовать два связанных с окнами коэффициента.

Соотношение площади окон и пола в комнате:

  • для окна с трехкамерным стеклопакетом или двухкамерным с аргоном – 0,85;
  • для окна с обычным двухкамерным стеклопакетом – 1,0;
  • для рам с обычным двойным остеклением – 1,27.

Стены и потолок

Потери тепла зависят от количества наружных стен, качества теплоизоляции и от того, какое помещение расположено над квартирой. Для учета этих факторов будет использоваться еще 3 коэффициента.

Число наружных стен:

  • нет наружных стен, потери тепла отсутствуют – коэффициент 1,0;
  • одна наружная стена – 1,1;
  • две – 1,2;
  • три – 1,3.
  • нормальная теплоизоляция (стена толщиной в 2 кирпича или слой утеплителя) – 1,0;
  • высокая степень теплоизоляции – 0,8;
  • низкая – 1,27.

Учет типа вышерасположенного помещения:

  • отапливаемая квартира – 0,8;
  • отапливаемый чердак – 0,9;
  • холодный чердак – 1,0.

Высота потолков

Если вы пользовались способом расчета по площади для комнаты с нестандартной высотой стен, то для уточнения результата придется ее учесть. Коэффициент можно узнать следующим образом: имеющуюся высоту потолка разделить на стандартную высоту, которая равна 2,7 метра. Таким образом мы получим следующие цифры:

  • 2,5 метра – коэффициент 0,9;
  • 3,0 метра – 1,1;
  • 3,5 метра – 1,3;
  • 4,0 метра – 1,5;
  • 4,5 метра – 1,7.

Климатические условия

Последний коэффициент учитывает температуру воздуха на улице в зимнее время. Отталкиваться будем от средней температуры в наиболее холодную неделю года.

Расчет количества секций радиаторов

После того как нам стала известна мощность, требуемая для обогрева помещения, мы можем произвести расчет батарей отопления.

Для того чтобы рассчитать количество секций радиатора, нужно поделить рассчитанную общую мощность на мощность одной секции прибора. Для проведения вычислений можно пользоваться среднестатистическими показателями для разных типов радиаторов со стандартным осевым расстоянием, равным 50 см:

  • для чугунных батарей примерная мощность одной секции составляет 160 Вт;
  • для биметаллических – 180 Вт;
  • для алюминиевых – 200 Вт.

Справка: осевое расстояние радиатора – это высота между центрами отверстий, через которые подается и отводится теплоноситель.

Для примера определим требуемое число секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, что вы считали мощность простейшим способом по площади помещения. Делим требуемые для ее обогрева 1500 Вт мощности на 180 Вт. Полученное число 8,3 округляем – необходимое число секций биметаллического радиатора равно 8.

Важно! Если вы решили выбрать батареи нестандартного размера, узнайте мощность одной секции из паспорта прибора.

Зависимость от температурного режима системы отопления

Мощность радиаторов указывается для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, для подбора батарей с нужным количеством секций придется произвести дополнительные расчеты.

Для начала определим тепловой напор системы, который представляет собой разницу между средней температурой воздуха и батарей. За температуру приборов отопления берется среднее арифметическое от значений температуры подачи и отвода теплоносителя.

  1. Высокотемпературный режим: 90/70/20 (температура подачи — 90 °C, обратки —70 °C, за среднюю температуру в помещении принимается значение 20 °C). Тепловой напор рассчитаем так: (90 + 70) / 2 – 20 = 60 °С;
  2. Среднетемпературный: 75/65/20, тепловой напор – 50 °С.
  3. Низкотемпературный: 55/45/20, тепловой напор – 30 °С.

Чтобы узнать, сколько секций батареи вам понадобится для систем с тепловым напором 50 и 30, нужно умножить общую мощность на паспортный напор радиатора, а затем разделить на имеющийся тепловой напор. Для комнаты 15 кв.м. потребуется 15 секций алюминиевых радиаторов, 17 – биметаллических и 19 – чугунных батарей.

Для отопительной системы с низкотемпературным режимом вам потребуется в 2 раза больше секций.

(голосов: 7, средняя оценка: 3,43 из 5)

Особенности расчета тепловой энергии на отопление здания

Самостоятельное оборудование дома системой отопления — очень ответственное занятие. Выбирать все комплектующие, включая котёл, без предварительно подготовленных расчётов будет неразумно. В первую очередь необходимо сделать расчёт тепловой энергии на отопление здания. Калькулятор может помочь в этом вопросе. Именно площадь помещения является первым, что нужно узнать перед покупкой оборудования.

Чтобы отопление в доме было эффективным и качественным, а также были созданы комфортные условия проживания, система должна выполнять две важные функции. Они очень похожи между собой и мало чем отличаются:

  1. 1. Оптимальная температура воздуха во всём помещении на постоянной основе. Под потолком воздух будет теплее, но разница должна быть незначительная. Согласно общепринятым правилам, оптимальной температурой в помещении считается около +20 градусов Цельсия. Система отопления должна иметь возможность прогреть определённый объём воздуха до необходимой температуры в помещении. Если говорить о юридической стороне вопроса, то все требуемые параметры прописаны в государственных стандартах, а в частности в ГОСТ 30494–96 .
  2. 2. Компенсирование теплопотерь через элементы здания. К сожалению, тепловые потери являются серьёзным соперником системы отопления. Хотя их и можно минимизировать с помощью хорошей теплоизоляции, но полностью устранить не получится.
Читать еще:  Система отопления закрытого типа: схема, монтаж и основные элементы

Во втором варианте тепло может уходить из дома по разным причинам и направлениям. К ним можно отнести фундамент, полы, изначально плохо заизолированные стыки строительных конструкций, выход газовых и канализационных труб, окна и стены, вентиляция и дымоход.

Разумеется, чтобы система отопления справлялась со своей основной задачей, она должна иметь запас мощности с учётом теплопотерь. Кроме этого, мощность нужно выбирать с учётом площади помещения и его расположения в здании, а также в соответствии с другими требованиями.

Как правило, рассчитывать эти данные необходимо, начиная с каждой отдельной комнаты, после чего складывать все данные и добавлять 10% запаса для того, чтобы устройство не работало на своих пределах. При этом количество радиаторов в комнате после этого определить несложно, поскольку расчёты имеются по каждой из них.

В непрофессиональных кругах существует обобщённый метод расчёта, где на 1 кв. м помещения нужно 100 Вт тепловой энергии.

Самый примитивный способ подсчёта — использование формулы:

  • Q — необходимое количество тепла для здания;
  • S — площадь помещения;
  • 100 — количество мощность в Вт на 1 кв. м.

Этот способ очень простой, но он не является совершенным. Стоит отметить, что такая формула применима только для комнат, где высота потолков от 2,5 до 3 м. То есть при более высокой комнате нужно формулу рассчитывать в зависимости от объёма помещения, а не от её квадратуры.

Разумеется, что рассчитывать теперь нужно, отталкиваясь от мощности на один кубический метр, а не квадратный. Таким образом, для кирпичного дома будет достаточно 34 кВт на один кубический метр, а для панельного 41 кВт.

Результат можно получить более точный, так как здесь учитываются не только размеры площади помещения, но и в определённой степени тип стен.

С другой стороны, максимальная точность определяется совсем по-другому. Связано это с упущением многих нюансов, которые влияют на теплопотери.

Вышеуказанные методы применимы только для приблизительного подсчёта. В связи с этим полностью им доверять не стоит. Даже человек, который ничего не понимает в подобных расчётах, может засомневаться в их правдоподобности. К примеру, не могут же быть одинаковые цифры для северных и южных регионов. Также стоит учитывать и количество окон, стен в комнате, которые выходят на улицу. Для комнаты, где одна стена контактирует с воздухом и имеется только одно окно, теплопотери будут выше, чем в угловом помещении с двумя окнами.

Кроме этого, важны и площадь самих окон, материал, из которых они изготовлены, и ещё другие нюансы, влияющие на теплопотери. Одним словом, учитывать при расчёте отопления помещения необходимо множество факторов. Сделать это не так сложно даже начинающему мастеру. Благодаря такому подходу теплопотери будут минимальными.

За основу в этом методе также можно взять соотношение 100 кВт на 1 кв. м помещения. Но сама формула будет усовершенствованной и к ней прибавится много новых дополнительных факторов и коэффициентов.

Выглядит она следующим образом:

Q = (S x 100) x А x Б x В x Г x Д x Е x Ё x Ж x З x И x Й x К.

Кириллические буквы взяты по алфавиту и не имеют никакого отношения к математическим формулам или законам физики. Главное, правильно сделать тепловой расчёт помещения.

Можно более детально разъяснить каждую составляющую формулы:

  1. 1. А — количество стен в комнате, которые контактируют с воздухом (внешние стены здания). Разумеется, что наличие внешних стен влечёт за собой тепловые потери. Кроме этого, имеются ещё и угловые комнаты, которые более уязвимы, поскольку имеют «мостики холода». Сквозь углы в помещение попадает больше холода, чем через стены. Подставлять коэффициент по этому фактору необходимо следующим образом: внешних стен нет — умножаем на 0,8, при одной — на 1, при двух — на 1,2, а при трёх — на 1,4.
  2. 2. Б — расположение внешних стен относительно сторон света. Даже в условиях сильных северных холодов солнечные лучи имеют значение. Логично, что стены, которые «смотрят на юг», имеют более сильное солнечное влияние, чем стены, смотрящие на север. На последние этот фактор практически не влияет, так же как и на восточную сторону. Таким образом, коэффициент «Б» можно учитывать только тогда, когда стены развёрнуты на север или восток, умножая на 1,1. Если сторона западная или южная, то учитывать влияние солнца не нужно, то есть умножение происходит только на 1.
  3. 3. В — влияние зимних ветров на теплопотери. Хотя иногда этот фактор и не имеет значения, так как дом расположен на участке с защитой от ветров, но если это не так, то нужно вносить поправку на холодную «розу ветров». Разумеется, что стена, в которую дует «в лоб» ветер, будет иметь намного больше теплопотерь, чем противоположна ей. В любом регионе существует уже составленная согласно многолетним наблюдениям так называемая роза ветров — график, который показывает направления ветра в зимнее и летнее время. Если есть необходимость в такой поправке, то нужно умножить значение на такой коэффициент: наветренная сторона — на 1,2, подветренная — на 1, а параллельная — на 1,1.
  4. 4. Г — учитывание расположения дома в определённых климатических условиях. Большое значение для количества теплопотерь имеет местонахождение здания в определённых климатических условиях. Разумеется, что в зимний период показатели термометра опускаются в минус. Но для каждого региона эти показатели разные. Как правило, эти данные можно уточнить в метеослужбе, но можно сделать расчёты и самостоятельно. При этом необходимо умножать на коэффициент от 0,7 до 1,5 при средней температуре от -10 до -35 градусов.
  5. 5. Д — степень утепления внутренних стен. Одним из значений теплопотерь, которое нужно учитывать при расчёте, является степень изолирования конструкций. В большей мере это относится к стенам здания. То есть их уровень термоизоляции напрямую влияет на теплопотери. Таким образом, если стены без утепления, следует умножать на 1,27, среднее качество — 1, а хорошая термоизоляция — на 0,85.
  6. 6. Е — поправка на высоту потолков. Во многих зданиях потолки не имеют стандартно принятой нормы высоты в 3 метра. В связи с этим и теплопотери могут быть разные исходя из такого параметра. Его стоит также учитывать. Если высота более трех метров, требуется умножать на 1,1, от 3,6 до 4 — на 1,15, более 4 — на 1,2.
  7. 7. Ё — тип пола. Это значение нужно учитывать так же, как и помещение, которое находится под ним. Пол считается одним из основных источников потерь тепла. Поэтому нужно внести некоторые коррективы. Пол без утепления и расположенный под подвальным помещением — следует умножать на 1,4, пол находится над землёй, но имеется утепление — на 1,2, под отапливаемым помещением — на 1.
  8. 8. Ж — тип верхнего помещения и потолка. Как известно, тёплый воздух всегда будет подниматься в верхнюю часть помещения, и если потолок имеет свои особенности и увеличенные теплопотери, то это тоже нужно учитывать. Если сверху расположен чердак с утеплением, то умножать нужно на 0,9, а если отапливаемое помещение, то на 0,8.
  9. 9. З — особенности окон. Следует учитывать и коэффициент инфильтрации здания в расчёте тепловой нагрузки. Окна являются одним из ключевых факторов при большой потере тепла. Разумеется, что в основном это зависит от качества производства самой оконной конструкции. Ранее устанавливались только деревянные конструкции, которые по степени потерь тепла значительно уступают современным стеклопакетам с несколькими камерами. Хотя и стеклопакеты бывают разные. К примеру, двухкамерные конструкции будут намного теплее однокамерных. Для учёта этого фактора следует подставлять такие значения: Деревянные окна с двойным остеклением — 1,27, однокамерные стеклопакеты — 1, двухкамерные — 0,9.
  10. 10. И — общая площадь остекления. Хотя можно установить самые новые окна с 3 камерами и аргоновым покрытием, но полностью избежать потерь тепла не удастся. Для того чтобы определить это значение, необходимо сначала найти общую площадь окон с помощью формулы х = Sок / Sп. После этого, в зависимости от полученного значения, умножать его от 0,8 до 1,2.
  11. 11. Й — наличие входной двери. Входная дверь или балкон также имеют большое значение для расчёта тепловой нагрузки на отопление здания. При каждом открытии в комнату поступает определённое количество холодного воздуха. Это нужно учитывать при расчётах теплопотерь. Если имеется одна дверь на улицу или на балкон, то умножать нужно на 1,3, а если две, то на 1,7.
Читать еще:  Принцип работы радиатора: самые популярные виды

После того как все данные учтены и выведено значение объёма теплопотерь, для каждой комнаты нужно правильно подсчитать количество секций радиатора для создания комфортной температуры. Для этих целей применяются разные методики. Как оказалось, посчитать расход теплоэнергии, которая уходит из помещения через разные пути, несложно.

Оптимальный вариант — это использование коэффициента площади помещения. Квадратура указана в технической документации к зданию, а требования — к количеству необходимой энергии в нормах СНиП.

Согласно таким требованиям, нужно ориентироваться на следующие показатели:

  • средняя полоса России — на 1 квадрат нужно от 60 до 100 Вт;
  • если области северные, то этот показатель увеличивается до 150−200 Вт.

Опираясь на эти показатели, можно рассчитать необходимое потребление энергии для каждой комнаты и количество рёбер радиатора для каждой комнаты. Сколько кВт энергии имеет одно такое ребро, указано в технической документации к батарее.

Таким образом, на отопление здания расчёт тепловой нагрузки с калькулятором сделать несложно. Его можно осуществить с помощью общих методов с использованием укрупнённых значений, а также точных математических способов. Главное, правильно подойти к задаче. Только так можно получить действительно хороший результат.

Расчет обогрева помещения (формула)

Узнай стоимость ремонта

Ремонтные работы?

Почему клиенты выбирают нас?

Отопление и Ремонт

У нас самые выгодные цены!

На данной вкладке интернет проекта мы постараемся найти и подобрать для своей дачи правильные части отопления. Конструкция обогревания дачи насчитывает некоторые элементы. Монтаж обогревания имеет терморегуляторы, крепежи, трубы котел, увеличивающие давление насосы, бак для расширения, развоздушки, батареи, систему соединения, коллекторы. Все элементы системы очень важны. Поэтому выбор каждой части конструкции нужно делать грамотно.

В холодные месяцы года актуальным всегда становится вопрос, как обеспечить обогрев помещений и сохранить уже имеющееся тепло. В осенне-весенний период, когда центральное отопление еще или уже не работает, или же для дополнительного обогрева зимой, самым распространенным способом поддержания оптимальной температуры является использование различного рода обогревающих устройств.

И для того, чтобы рационально использовать энергию, необходимо уметь рассчитывать мощность обогревателя и сделать правильный выбор его типа для своего жилища.

Грамотный учет этих двух факторов (мощности и типа) всегда обеспечивает правильный расчет обогрева помещения.

Расчет мощности обогрева

Существует несколько методов расчета необходимой тепловой мощности обогрева помещения. Остановимся на двух, самых распространенных, доступных для самостоятельного применения:

  • метод обогрева одного кубического метра жилья. Чаще всего применяется при расчетах количества секций радиаторов в домах стандартной постройки (без особых энергосберегающих мер);
  • метод с учетом температуры воздуха внутри и вне помещения. Является стандартным для расчета необходимой тепловой мощности отдельного обогревателя (масляного, инфракрасного и других).
  1. Итак, посчитаем, сколько секций (ребер) чугунной батареи (отечественного производства) необходимо взять для обогрева до +20 градусов помещения площадью 18 м2 и высотой 2,7 м. Сначала выбираем марку чугунного радиатора (например, М-140-АО) по теплоотдаче на 1 м3 из таблицы.

Добрый день в Постановлении Правительства РФ от 06.05.2011 N 354 (ред. от 16.04.2013) «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» для расчета отопления использовалась формула:

Размер платы за коммунальную услугу по отоплению=объем потребленной тепловой энергии * общая площадь i-го жилого или нежилого помещения / общая площадь всех помещений многоквартирного дома, включая помещения, входящие в состав общего имущества в многоквартирном доме * тариф

где общая площадь всех помещений многоквартирного дома, включая помещения, входящие в состав общего имущества в многоквартирном доме состоит из суммы площадей, которые в квитанции кварплаты называются: 1) Общая площадь жилых и нежилых помещений 2) площадь помещений общего имущества дома

А в следующей редакции (ред. от 19.09.2013) в формуле делится на общая площадь всех жилых и нежилых помещений многоквартирного дома т.е.

Размер платы за коммунальную услугу по отоплению=объем потребленной тепловой энергии * общая площадь i-го жилого или нежилого помещения / общая площадь всех жилых и нежилых помещений многоквартирного дома * тариф

ЖЭК при расчете отопления делит только на Общая площадь жилых и нежилых помещений

Правильно ли они расчитывают или должны учитывать всю площадь дома?

Если не правильно куда обращаться с жалобами?

Расчет количества радиаторов отопления производят исходя из следующих данных: 41 Ватт тепловой мощности на 1 куб.м. при наличии в помещении по одному: окну, двери, внешней стены, т.е. стандартных условий.

Рассчитаем, например, количество радиаторов для комнаты размерами 3х4 м высотой потолка в 2,7 м. Прежде всего, определим объем комнаты: 3х4х2,7=32,4 м3

Затем найдем тепловую мощность, умножением найденного объема на 41 – 32,4*41 = 1328,4 Ватт. Если, допустим, теплоотдача от одной секции нового радиатора 180 Ватт, можно без труда рассчитать и требуемое количество радиаторов: 1328,4:180 = 6,3 (7 – после округления). Для обогрева выбранного помещения нужно 7 секций радиаторов, каждая по 180 Ватт.

Нужно учитывать следующее: если помещение не закрывается дверью, при расчете суммируют площади самого и соседнего помещений. Этот расчет производится для принятой средней температуры теплоносителя 70˚ С, более низкая температура требует соответственного увеличения количества секций. Если в комнате установлен стеклопакет, то количество секций уменьшается, т.к. он снижает потери тепла, примерно, на 15-20%.

В случае угловой комнаты, ее теплопотери увеличиваются на 20%. На теплопотери, а значит и на количество секций, влияет этажность, степень утепления стен, декоративные панели на радиаторах (только они могут привести к потере теплоотдачи на 20-30%).

Если уже установленные в комнате чугунные батареи необходимо заменить на другой какой-то вид радиаторов, то их количество можно подсчитать очень легко, поскольку у чугунных радиаторов постоянные теплоотдача (150 Вт) и межосевое расстояние (600 мм): количество секций чугунных батарей умножают на 150 Вт и делят на теплоотдачу одной секции нового радиатора. Затем можно сделать необходимые поправки на холод и жару.

Для более точных расчетов используется формула расчета количества радиаторов отопления .

Есть несколько подходов к вычислению количества радиаторов отопления. стандартный, примерный («на глаз»), объемный.

В соответствии со «СНП» на 1 кв.м. нужно 100 Ватт теплоотдачи радиатора отопления. Тогда мощность вычисляют по формуле.

P = мощность одной секции радиатора, S = площадь отапливаемого помещения.

Допустим, что площадь помещения составляет 25 кв.м. а мощность одной секции радиатоpа 180 Ватт, тогда:

25х100:180=13,9, т.е. понадобится 14 секций.

Если помещение угловое или находится в торце, полученное число нужно еще помножить на коэффициент 1,2.

Поскольку радиаторы изготавливаются массово, и у них – стандартные размеры, то принято считать, что при высоте потолка в 2,7 м на 1,8 кв.м. нужна одна секция. Скажем, для комнаты площадью 25 кв.м. понадобится – 25 :1,8=13,9 т.е. 14 секций. При мощности менее 50Ватт этот способ не рекомендуется применять из-за больших погрешностей.

Читать еще:  Отопление для дома: выбор системы и источника энергии

При этом способе расчет ведется на основе объема помещения. Известно, что секция радиатора, имеющая мощность 200 ватт, может обогреть 5 куб.м. Если размеры комнаты будут 4х5х2,7, то 4х5х2,7:5=10,8, т.е. для такой комнаты нужно купить 11 секций мощностью 200 Ватт.

Чтобы при расчете оценить все условия в полном объеме лучше обратиться к специалистам.

Самостоятельный расчёт тепловой мощности

Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта.

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.

Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

  1. Тип объекта (частный дом, одноэтажное либо многоэтажное здание, административное, производственное или складское).
  • Количество проживающих в здании либо работающих в одну смену человек, количество точек подачи горячей воды.
  • Архитектурная часть (габариты крыши, стен, полов, размеры дверных и оконных проёмов).
  • Специальные данные, например, количество рабочих дней в году (для производств), продолжительность отопительного сезона (для объектов любого типа).
  • Температурные режимы в каждом из помещений объекта (их определяет CHиП 2.04.05-91).
  • Функциональное назначение (складское производственное, жилое, административное или бытовое).
  • Конструкции крыши, наружных стен, полов (тип утепляющих прослоек и применяемых материалов, толщина перекрытий).
  • Зачем нужен теплотехнический расчёт?

    • Чтобы определить мощность котла.

    Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.

  • Для выполнения согласования на газификацию объекта и получения ТУ.Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования.

    Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании .

    Как происходит теплотехнический расчёт

    Можно воспользоваться упрощённой формулой. чтобы определить минимально допустимую мощность тепловых систем:

    Qт – это тепловая нагрузка на определённое помещение;

    K – коэффициент теплопотерь здания;

    V – объём (в м 3 ) отапливаемого помещения (ширина комнаты на длину и высоту);

    ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

    Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:

    • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
    • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
    • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
    • K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

    Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

    • +18 – общественные здания и производственные цеха;
    • +12 – комплексы высотного складирования, склады;
    • + 5 – гаражи, а также склады без постоянного обслуживания.

    РАСЧЕТ ТЕПЛОВОЙ МОЩНОСТИ ДЛЯ ВЫБОРА НАГРЕВАТЕЛЯ

    Расчет тепловой мощности обогрева помещения

    Для правильного выбора нагревателя, предлагаем вам ознакомиться с правилами расчета тепловой мощности, необходимой для вашего конкретного случая применения:

    V x T x K = ккал/ч

    V — Объем обогреваемого помещения (длина х ширина х высота), м 3

    ∆Т — Разница между ˚t воздуха вне помещения и необходимой ˚t внутри помещения, ˚С

    К — Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

    Без теплоизоляции ( К=3,0-4,0 ) — Деревянная конструкция или конструкция из гофрированного металлического листа.

    Простая теплоизоляция ( К=2,0-2,9 ) — Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

    Средняя теплоизоляция ( К=1,0-1,9 ) — Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

    Высокая теплоизоляция ( К=0,6-0,9 ) — Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

    Пример:

    Объем помещения: 5 х 16 х 2,5 = 200

    ∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

    К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

    Расчет: 200 х 45 х 1,7 = 15 300 ккалч

    1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.

    Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

    Таблица Мощности для помещений:

    Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

    Расчёт мощности тепловой пушки, нагревателя воздуха

    Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

    V х ΔT x k = ккал/ч , где:

    • V — объем обогреваемого помещения (длина, ширина, высота), м3;
    • ΔT — разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
    • k — коэффициент рассеивания (теплоизоляции здания):
      k = 3,0-4,0 — без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа);
      k = 2,0-2,9 — небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон);
      k = 1,0-1,9 — средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);
      k = 0,6-0,9 — высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

    Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
    Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C — (-5 C) = 23°C.
    k = 4 (здание с низкой изоляцией).

    Расчет мощности:
    144 м3 x 23°C x 4 = 13 248 ккал/ч — нужная минимальная мощность.

    Принимается:
    1 кВт = 860 ккал/ч;
    1 ккал = 3,97 ВТЕ;
    1 кВт = 3412 ВТЕ;
    1 БТЕ = 0,252 ккал/ч.

    Итого: 13 248 ккал/ч / 860 = 15,4 кВт — нужная минимальная мощность в кВт.

    Теперь можно выбрать тип нагревателя.

  • Ссылка на основную публикацию
    Adblock
    detector