Индукционный нагреватель своими руками: схема

Фанат науки

По медной петле — индуктору — пропускается электрический ток большой силы (сотни ампер) и большой частоты (десятки — сотни кГц). В результате в металлической заготовке, стоящей внутри индуктора или рядом с ним, наводятся токи Фуко, тоже большой силы и частоты. Высокочастотный ток в заготовке под действием скин-эффекта вытесняется в тонкие поверхностные слои, в результате чего его плотность резко возрастает. Слой заготовки, по которому протекают большие токи, начинает быстро разогреваться. Температура может достичь нескольких тысяч градусов, что позволяет плавить металл в домашних условиях, придумывать и создавать свои собственные необычные сплавы; сваривать и паять металлические детали; закаливать отвёртки, свёрла, ножи и так далее, применять установку в кузнечных и ремонтных мастерских.

Индукционный нагрев позволяет разогревать электропроводящие материалы (любой металл, графит, электропроводную керамику) бесконтактно. Прямо через воздух, через слой воды, через стеклянную, деревянную или пластиковую стенку, в вакуумной камере или в камере с защитным газом. При этом заготовка остаётся идеально чистой, так как не окисляется в газовой струе, не касается грязной поверхности печки и т п.

За основу был взят инвертор Сергея Владимировича Кухтецкого, разработанны й в Институте химии. Схема инвертора, её подробное описание и рекомендации по сборке опубликованы по адресу: www.icct.ru В схеме применены современные электронные компоненты, что позволяет собрать мощный и надёжный инвертор в домашних условиях за небольшую цену порядка нескольких тысяч рублей (цены на промышленные аналоги достигают десятков и сотен тысяч руб).

На форуме induction.listbb.ru совместными усилиями с форумчанами Derba, Феникс, Jab, Фулюган, Ostap, -CE- проведена до работка схемы, установлена дополнительная плата фазовой автоподстройки частоты ФАПЧ для автоматического удержания резонанса, установлена скоростная защита от превышения тока (как при превышении питания, так и в результате пробоя силовых мосфетов из-за их перегрева или сбоя модуля управления). Добавлены некоторые детали, уменьшающие вероятность перегрева мосфетов и сбоя модуля управления (приводящие к появлению сквозных токов в силовом мосте).

• Потребляемая мощность инвертора в зависимости от применяемых индукторов: 1. 4 кВт.
• Частота тока в индукторе: 300 кГц.
• Сила тока в индукторе:

400А.
• Максимальный потребляемый от сети ток при двухвитковом индукторе — 20А, потребляемое напряжение — 220V.

Индукционной нагреватель снабжён защитой, отключающей схему при превышении напряжения питания, при коротком замыкании индуктора, при заливании индуктора водой.

Схемы и обсуждение доработок смотрите на форуме: induction.listbb.ru здесь и здесь

Видео — плавление низкоуглеродистой стали (гайки) на воздухе:

Видео — плавление высокоуглеродистой стали (шарик от подшипника из стали ШХ-15):


Видео — плавление низкоуглеродистой стали в защитном газе (аргоне):


Видео — нагрев стального шарика через слой воды. Возможность нагрева железяк через слой воды интересна, вода электромагнитному полю не помеха

Мощное высокочастотное электромагнитное поле выталкивает железные заготовки из индуктора. С одной стороны это создаёт проблемы — сложно греть мелкие заготовки, их выносит из индуктора прочь и приходится их как-то закреплять (так называемый эффект электромагнитного дутья).
С другой стороны, можно плавить металл в подвешенном состоянии — (левитационная плавка, плавка в электромагнитном тигле):

Доработка инвертора для индукционного нагрева.

Метод бесконтактного нагрева жидкометаллических образцов токами высокой частоты в вакууме или защитном газе является оптимальным для экспериментов с мелкими образцами электропроводящих материалов.

Промышленные инверторы высокой частоты не обладают нужными для проведения эксперимента характеристиками (высокой мощностью при высокой частоте, необходимой для нагрева мелких образцов), в связи с чем был изготовлен самодельный инвертор. За основу был принят инвертор, разработанный Сергеем Кухтецким в Институте химии и химической технологии РАН, работающий следующим образом.
Индуктор для нагрева образцов, представляющий собой катушку колебательного контура совместно с компенсирующий батареей конденсаторов, накачивается от независимо работающего генератора высокой частоты.

Генератор выполнен по схеме полный мост, его частота автоматически подстраивается под собственную частоту колебательного контура вручную и не может изменяться во время работы. Предлагаемый инвертор не имеет схемы защиты силовых транзисторов от сквозных токов и схемы управления мощностью нагрева (Рис.1).

Рис.1. Блок-схема простого инвертора для индукционного нагрева.

Эксплуатация данного простого инвертора выявило следующие проблемы. В результате нагрева образца, а также в результате движения образца в индукторе происходит изменение индуктивности, входящей в состав колебательного контура, и изменению его собственной частоты. Поскольку частота работы инвертора задается генератором с неизменяемой во время работы частотой, рассогласование частот колебательного контура и генератора приводит к резкому падению мощности нагрева, вибрациям заготовки в индукторе, а также выходу силовых транзисторов на неоптимальный режим работы в емкостном режиме, что приводит к выходу их из строя.

Для решения указанных проблем инвертор был дооборудован схемой фазовой автоподстройки частоты ФАПЧ, схемой скоростной защиты силовых транзисторов от превышения тока и импульсным регулятором мощности с управлением от ПК. Схемы защиты и регулирования мощности выполнены в виде отдельных модулей и могут применяться для иных задач.

Схема ФАПЧ состоит из генератора с изменяемой частотой, датчика тока, датчика напряжения, регулируемой линии задержки, формирователя управляющих импульсов для силового моста. Датчики тока и напряжения измеряют соответствующие величины на колебательном контуре, после чего производится сравнение их фаз. Нулевой сдвиг фаз означает синхронную работу колебательного контура на собственной частоте и задающего генератора. В случае сдвига фаз задающий генератор автоматически корректирует частоту, подстраивая ее под собственную частоту колебательного контура (Рис.2). Электрическая схема доработанного инвертора приведена на Рис.5.

Настройка диапазона слежения ФАПЧ, порядок действий:

Необходимо определить собственную частоту колебательного контура, например, следующим образом.

1) Снять с шин колебательного контура согласующий трансформатор.

2) Подсоединить к шинам, соединяющим индуктор с батареей конденсаторов, осциллограф.

3) Настроить осциллограф в режим ожидания (в режим одиночного измерения Trigger).

4) Кратковременно коснуться шин колебательного контура батарейкой (чем большего напряжения, тем лучше, например «Крона»). На экране появится «дребезг» – собственные колебания контура (аналог — звенящий на собственных частотах стакан, по которому ударили ложкой). При необходимости провести данную процедуру несколько раз о получения устойчивой картины на экране осциллографа.

Период собственных колебаний измеряется по сетке осциллографа, далее по формуле f = 1 / период, вычисляется собственная частота колебательного контура.

Настройка диапазона работы ФАПЧ проводится следующим образом.

1) К выходу микросхемы фапч-генератора CD4046 подсоединяется осциллограф (4 нога).

2) Задать минимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 1 вольт (например подсевшая батарейка) подсоединить к ноге 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

3) Выставить минимальную частоту вращением потенциометра на ноге 12 микросхемы CD4046 на 30-50 кГц ниже собственной частоты колебательного контура (диапазон подбирается опытным путём для надёжного подхватывания ФАПЧ).

4) Задать максимальную частоту работы генератора CD4046. Для этого плюс источника питания напряжением 4.5 вольта (например три батарейки) подсоединить к ноге 9 микросхемы CD4046, минус источника питания подсоединить к общей шине.

5) Вращением потенциометра на ноге 11 микросхемы CD4046 задать частоту на 30-50 кГц выше собственной.

В результате проделанных операций инвертор автоматически стартует с подхватыванием резонанса и удерживает его в процессе работы.

Подбор витков согласующего трансформатора.

1) Наматываем согласующий трансформатор на глазок (например 20 витков).

2) Поключаем инвертор к ЛАТРу. Постепенно повышаем напряжение. Измеряем напряжение на ЛАТРе и потребляемый инвертором ток амперметром.

3) Необходимо добиться максимальной мощности инвертора — при напряжении на ЛАТРе 220 вольт ток должен быть максимальным для транзисторов данного типа.

4) Если потребляемый ток велик, а напряжение на ЛАТРе всё еще маленькое — доматываем несколько витков.

5) Если потребляемый ток мал, а напряжение на ЛАТРе уже велико — сматываем несколько витков.

Рис.2. Блок-схема инвертора для индукционного нагрева с ФАПЧ.

Читать еще:  Какой обогреватель лучше для дома: виды

Модуль защиты состоит из выполненного на шунте датчика тока, схемы фиксации превышения тока с настройкой порога срабатывания и схемы отключения питания. Питание подводится к инвертору через шунт. В момент превышения тока на шунте фиксируется превышение падения напряжения, что приводит к перебрасыванию триггера и подаче сигнала запирания на силовой транзистор (Рис.3). Электрическая схема модуля защиты приведена на Рис.6.

Настройка модуля защиты.

Настройка порога срабатывания модуля защиты производится следующим образом. К выходным клеммам подсоединяется спираль из толстой нихромовой проволоки (имитатор нагрузки). Последовательно со спиралью подключаем амперметр. Поворачивая потенциометр настройки порога срабатывания, засекаем на корпусе потенциометра риски, соответствующие току в спирали.

Рис.3. Блок-схема модуля скоростной защиты.

Видео — срабатывание модуля скоростной защиты:

Импульсный регулятор мощности выполнен по схеме понижающего ШИМ-преобразователя типа step-down. Регулирование мощности осуществляется посредством изменения скважности управляющего ШИМ-сигнала. Управляющий сигнал генерируется микроконтроллером STM32F767 (готовая отладочная плата со встроенным USB-программатором). Параметры регулирования мощности задаются с компьютера через интерфейс USB, входящий в состав любого ПК, данное решение позволяет синхронизировать сбор данных и управление экспериментальной установкой (блок-схема изображена на Рис.4).

Рис.4. Блок-схема импульсного регулятора мощности.

Программа микроконтроллера предусматривает как ручное (педаль, ручка энкодера), так и дистанционное управление регулятором мощности (с помощью ПК), осуществление плавного старта и стопа, стабилизации выходной мощности по току или по напряжению, индикации работы прибора. Электрическая схема импульсного регулятора мощности приведена на Рис.7.

Рис.5. Схема инвертора для индукционного нагрева образцов с фазовой автоподстройкой частоты.

Рис.6. Электрическая схема универсального скоростного прерывателя тока для защиты установки индукционного нагрева.

Рис.7. Электрическая схема универсального импульсного регулятора мощности.

Индукционный нагреватель: схема и порядок действий при изготовлении своими руками

Уникальность человека заключается в том, что он все время изобретает приборы и механизмы, которые в значительной степени облегчают труд в той или иной сфере трудовой или жизненной деятельности.

Для этого, как правило, применяются новейшие разработки в области науки.

Исключением не стал и индукционный нагрев. В последнее время принцип индукции получил широкое применение во многих сферах, к которым можно смело отнести:

  • в металлургии индукционный нагрев используется для плавки металлов;
  • в некоторых отраслях промышленности используются специальные печи быстрого разогрева, функционирование которых основано на принципе индукции;
  • в бытовой сфере индукционные нагреватели можно использовать, например, для приготовления пищи, нагрева воды или отопления частного дома. (Об особенностях индукционного отопления Вы можете прочитать в этой статье).

На сегодняшний день существует великое множество индукционных установок промышленного типа. Но это отнюдь не означает, что конструкция таких приборов очень сильно замысловатая.

Простейший индукционный нагреватель вполне возможно изготовить для бытовых нужд своими руками. В этой статье подробно поговорим об индукционном нагревателе, а также о различных способах его изготовления своими руками.

Индукционные агрегаты для нагрева, которые конструируются своими руками, как правило, принято разделять на два основных вида:

  • вихревые индукторные нагреватели (сокращенно – ВИН), которые в основном используются для нагрева воды и обогрева жилища;
  • обогреватели, в конструкции которых предусмотрено использование различных типов электронных деталей и узлов.

Вихревой индукционный нагреватель (ВИН) состоит из следующих конструктивных компонентов:

  • устройство, которое преобразует обычную электроэнергию в высокочастотный ток;
  • индуктор, являющийся своего рода трансформатором, который образовывает магнитное поле;
  • теплообменник или нагревательный элемент, который расположен внутри индуктора.

Принцип функционирования ВИН заключается в следующих этапах:

  • преобразователь передает высокочастотный ток на индуктор, который представлен в виде цилиндра из медной проволоки;
  • индуктор образовывает электромагнитное поле, которое провоцирует появление вихревых потоков;
  • теплообменник, находящийся внутри индуктора, под воздействием этих вихревых потоков разогревается, и как следствие, нагревается и теплоноситель, который потом в таком виде поступает в отопительную систему.

Как изготовить

Первый вариант.
Электронная схема нагревателя. (Для увеличения нажмите) Достаточно простой и, в то же время, мощный индукционный нагреватель можно сконструировать на основе печатной платы, схема которой показана на рисунке.

Особенностями этой схемы являются следующие важные моменты:

  1. Такая конструкция, по сути, представляет собой мультивибратор, который организован на транзисторах большой мощности.
  2. Важным элементом схемы является сопротивление, которое не будет давать возможности перегреваться транзисторам, что в целом скажется на эффективном функционировании всего индуктора.
  3. Непосредственно сам индуктор должен иметь вид своего рода спирали, и состоять из 6–8 витков медной проволоки
  4. Чтобы не особо задумываться над конструкцией регулятора напряжения, то его можно взять уже в готовом варианте из компьютерного блока питания.

Второй вариант.
Этот способ устройства индукционного нагревателя основан на применении электронного трансформатора.

Суть его заключается в следующем:

  • две трубы между собой соединяются с помощью сварки таким образом, чтобы в разрезе напоминали форму бублика (такая конфигурация будет одновременно служить как проводник и нагревательный элемент);
  • медная проволока, при этом, непосредственно наматывается на корпус;
  • для качественного движения теплоносителя в корпус ввариваются два патрубка, через один с которых вода будет заходить в нагреватель, а через другой будет подаваться в отопительную систему.

Статью о самостоятельном изготовлении индукционного нагревателя воды читайте здесь.

Таким образом, мы указали все возможные способы сборки индукционного нагревателя с применением электронных деталей. Надеемся, что наши советы и рекомендации станут для вас весьма познавательной информацией.

Смотрите видео, в котором опытный пользователь объясняет один из вариантов изготовления индукционного нагревателя своими руками:

Как сделать индукционный нагреватель своими руками по схеме

Приборы, осуществляющие нагрев за счет электричества, а не газа, безопасны и удобны. Такие нагреватели не производят копоти и неприятного запаха, но потребляют большое количество электроэнергии. Отличный выход — собрать индукционный нагреватель своими руками. Это и экономия средств, и вклад в бюджет семьи. Существует много простых схем, по которым индуктор можно собрать самостоятельно.

Сила индукции

Для того чтобы было легче разобраться в схемах и правильно собрать конструкцию, нелишним будет заглянуть в историю электричества. Способы нагрева металлических конструкций электромагнитным током катушки широко используются в промышленном изготовлении бытовых приборов — котлов, нагревателей и плит. Оказывается, можно сделать рабочий и долговечный индукционный нагреватель своими руками.

Принцип работы устройств

Принцип работы устройств

Знаменитый британский ученый XIX века Фарадей в течение 9 лет проводил исследования, чтобы преобразовать магнитные волны в электричество. В 1931 году наконец было совершено открытие, получившее название электромагнитная индукция. Проволочная обмотка катушки, в центре которой находится сердечник из магнитящегося металла, создает магнитное поле под силой переменного тока. Под действием вихревых потоков сердечник нагревается.

Важный нюанс — нагревание произойдет, если переменный ток, питающий катушку, будет менять вектор и знак поля на высоких частотах.

Открытие Фарадея стали применять как в промышленности, так и при изготовлении самодельных моторов и электронагревателей. Первую плавильню на основе вихревого индуктора открыли в 1928 году в Шеффилде. Позже по тому же принципу обогревали цеха заводов, а для нагрева воды, металлических поверхностей знатоки собирали индуктор своими руками.

Схема устройства того времени действительна и сегодня. Классический пример — индукционный котел, в составе которого имеются:

  • металлический сердечник;
  • корпус;
  • тепловая изоляция.
Читать еще:  Виды пенопласта для утепления стен: особенности материала

Меньший вес, размер и более высокий КПД осуществляются за счет тонких стальных труб, служащих основой сердечника. В кухонных плитках индуктором выступает сплющенная катушка, расположенная вблизи варочной панели.

Особенности схемы для ускорения частоты тока следующие:

  • промышленная частота в 50 Гц не подходит для самодельных приборов;
  • прямое подключение индуктора к сети приведет к гулу и слабому нагреву;
  • эффективное нагревание осуществляется при частоте 10 кГц.

Сборка по схемам

Собрать индуктивный нагреватель своими руками может любой человек, знакомый с законами физики. Сложность устройства будет варьироваться от степени подготовленности и опытности мастера.

Существует множество видеоуроков, следуя которым можно создать эффективное устройство. Практически всегда необходимо использовать такие основные составляющие:

  • стальная проволока диаметром 6−7 мм;
  • медная проволока для катушки индуктивности;
  • сетка из металла (для удержания проволоки внутри корпуса);
  • переходники;
  • трубы для корпуса (из пластика или стали);
  • высокочастотный инвертор.

Этого будет достаточно для сборки индукционной катушки своими руками, а ведь именно она находится в основе проточного водонагревателя. После подготовки необходимых элементов можно подходить непосредственно к процессу изготовления аппарата:

  • нарезать проволоку на отрезки в 6−7 см;
  • металлической сеткой покрыть внутреннюю часть трубы и засыпать проволоку доверху;
  • аналогично закрыть отверстие трубы снаружи;
  • намотать на пластиковый корпус медную проволоку не менее 90 раз для катушки;
  • вставить конструкцию в систему отопления;
  • с помощью инвертора подключить катушку к электричеству.

Желательно предварительно заземлить инвертор и приготовить антифриз или воду.

По похожему алгоритму можно легко собрать индукционный котел, для чего следует:

  • нарезать заготовки из стальной трубы 25 на 45 мм со стенкой не толще 2 мм;
  • сварить их друг с другом, соединяя меньшими диаметрами между собой;
  • приварить железные крышки к торцам и просверлить отверстия для патрубков с резьбой;
  • сделать крепление для индукционной печки, приварив с одной стороны два уголка;
  • вставить варочную панель в крепление из уголков и подключить к электросети;
  • внести в систему теплоноситель и включить нагрев.

  • нарезать заготовки из стальной трубы 25 на 45 мм со стенкой не толще 2 мм;
  • сварить их друг с другом, соединяя меньшими диаметрами между собой;
  • приварить железные крышки к торцам и просверлить отверстия для патрубков с резьбой;
  • сделать крепление для индукционной печки, приварив с одной стороны два уголка;
  • вставить варочную панель в крепление из уголков и подключить к электросети;
  • внести в систему теплоноситель и включить нагрев.

Многие индукторы работают на мощности не выше 2 — 2,5 кВт. Такие обогреватели рассчитаны на помещение 20 — 25 м². Если генератор используют в автосервисе, можно подключить его к сварочному аппарату, но важно учитывать определенные нюансы:

  • Необходим переменный ток, а не постоянный как у инвертора. Сварочный аппарат придется исследовать на наличие точек, где напряжение не имеет прямой направленности.
  • Количество витков к проводу большего сечения подбирается математическим вычислением.
  • Потребуется охлаждение работающих элементов.

Создание усложненных приборов

Сделать нагревательную установку ТВЧ своими руками сложнее, но это подвластно радиолюбителям, ведь для ее сбора потребуется схема мультивибратора. Принцип работы аналогичен — вихревые токи, возникающие из взаимодействия металлического наполнителя в центре катушки и ее собственного высокомагнитного поля, нагревают поверхность.

Конструирование ТВЧ-установок

Поскольку даже небольшого размера катушки вырабатывают ток около 100 А, вместе с ними потребуется подключить резонирующую емкость для уравновешивания индукционной тяги. Существует 2 вида рабочих схем для нагревательной ТВЧ в 12 В:

  • целенаправленная электрическая;
  • подключенная к питанию сети.

  • целенаправленная электрическая;
  • подключенная к питанию сети.

В первом случае мини ТВЧ-установку можно собрать за час. Даже при отсутствии сети в 220 В можно использовать такой генератор где угодно, но при наличии автомобильных аккумуляторов как источников питания. Конечно, она недостаточно мощная, чтобы плавить металл, но способна нагреться до высоких температур, необходимых для мелкой работы, например, нагрев ножей и отверток до синего цвета. Для ее создания необходимо приобрести:

  • полевые транзисторы BUZ11, IRFP460, IRFP240;
  • автомобильный аккумулятор от 70 А/ч;
  • высоковольтные конденсаторы.

Ток источника питания 11 А в процессе нагревания снижается до 6 А из-за сопротивления металла, но необходимость в толстых проводах, выдерживающих ток 11−12 А, сохраняется, чтобы избежать их перегрева.

Вторая схема для индукционной установки нагрева в пластиковом корпусе более сложная, на основе драйвера IR2153, но по ней удобнее выстроить резонанс по регулятору в 100к. Управлять схемой необходимо через адаптер сети с напряжением от 12 В. Силовую часть можно подвести напрямую к основной сети в 220 В, используя диодный мост. Частота резонанса получается 30 кГц. Потребуются следующие элементы:

  • ферритовый сердечник 10 мм и дроссель 20 витков;
  • медная трубка в качестве катушки ТВЧ в 25 витков на оправку 5−8 см;
  • конденсаторы 250 V.

Вихревые нагреватели

Более мощную установку, способную греть болты до желтого цвета, можно собрать по простой схеме. Но при работе выделение тепла будет довольно большим, поэтому рекомендуется устанавливать радиаторы на транзисторы. Также потребуется дроссель, позаимствовать который можно из блока питания любого компьютера, и следующие вспомогательные материалы:

  • стальной ферромагнитный провод;
  • медная проволока в 1,5 мм;
  • полевые транзисторы и диоды под обратное напряжение от 500 В;
  • стабилитроны мощностью 2−3 Вт с расчетом на 15 В;
  • простые резисторы.

В зависимости от желаемого результата, намотка провода на медную основу составляет от 10 до 30 витков. Далее идет сборка схемы и подготовка катушки-основы нагревателя примерно из 7 витков медной проволоки в 1,5 мм. Она подключается к схеме, а затем к электричеству.

Умельцы, знакомые со сваркой и управлением трехфазным трансформатором, способны еще больше повысить КПД устройства при одновременном снижении веса и размера. Для этого нужно сварить основания двух труб, которые послужат как сердечником, так и нагревателем, а в корпус после обмотки вварить два патрубка для осуществления подвода и отвода теплоносителя.

Мастера рекомендуют обязательно сделать для этой конструкции изоляцию во избежание утечки тока и тепла. Это также позволит уменьшить шум во время работы.

Общие советы

Ориентируясь на схемы, можно достаточно быстро собрать индукторы различной мощности для нагрева воды, металлов, обогрева дома, гаража и автосервиса. Необходимо помнить и о правилах безопасности для эффективной службы нагревателей такого типа, ведь утечка теплоносителя из самодельного устройства может закончиться пожаром.

Есть определенные условия организации работы:

  • расстояние между индукционным котлом, стенами, электроприборами должно быть не меньше 40 см, а от пола и потолка лучше отступить 1 м;
  • с помощью манометра и устройства по сбросу воздуха обеспечивается система безопасности за выходным патрубком;
  • пользоваться устройствами желательно в закрытых контурах с принудительной циркуляцией теплоносителя;
  • возможно применение в пластиковых трубопроводах.

Самостоятельная сборка индукционных генераторов обойдется недорого, но и не бесплатно, ведь нужны комплектующие достаточно хорошего качества. Если у человека нет специальных знаний и опыта в радиотехнике и сварке, то не стоит самостоятельно собирать обогреватель для большой площади, ведь мощность нагрева не превысит 2,5 кВт.

Однако самостоятельная сборка индуктора может рассматриваться как самообразование и повышение квалификации хозяина дома на практике. Можно начать с небольших приборов по простым схемам, а поскольку принцип действия в более сложных устройствах тот же, только добавляются дополнительные элементы и преобразователи частоты, то и освоить его поэтапно будет легко и вполне бюджетно.

Самодельный индукционный нагреватель по рабочей схеме

Электромагнитная индукция – появление электрического тока при вмешательстве в магнитное поле. Инженеры смогли разработать нагреватели, которые работают по этому принципу. Сайт «Сантехник Портал» представляет схемы, как сделать индукционный нагреватель своими руками для бытового использования. Но сначала необходимо понять, по какому принципу работает данное оборудование.

Читать еще:  Как приклеить плитку на печь своими руками?

Принцип действия индукционного нагревателя

После открытия Фарадеем электромагнитной индукции в 1831 году, силу индукции стали использовать в промышленности, различных моторах и генераторах, в трансформаторных устройствах. Были созданы нагреватели, которые работали на основе того же принципа индукции, что и печь для плавки металла. Чуть позже стали изготавливать бытовые приборы.

Итак, электромагнитная индукция возникает в обмотке из проволоки, намотанной на железный сердечник.

При разборке индукционного котла можно увидеть, что в его конструкцию входят: сердечник, электро- и теплоизоляция, и кроме этого непосредственно корпус. Данный обогреватель отличается от промышленных, главным образом, наличием тороидальной обмотки с медными проводниками. Ее расположение находится между двух сваренных между собой труб.

Материалом для изготовления этих труб служит ферримагнитная сталь. Стенки таких труб имеют толщину более 10 мм. Благодаря данному типу конструкции нагреватель весит гораздо меньше, его габариты более компактные, а КПД гораздо выше.

Сердечником здесь служит труба с обмоткой. Другая, необходима для непосредственного нагрева теплоносителя. Индукционный ток, генерируемый высокочастотным магнитным полем с внешней обмотки на трубу, служит для нагрева теплоносителя. Данный процесс вызывает вибрацию стенок, из-за чего на них не может отложиться накипь.

Из-за нагрева сердечника при работе происходит и нагрев теплоносителя. Температура сердечника увеличивается благодаря вихревым токам. Они образуются из-за магнитного поля, генерируемого токами высокого напряжения. Это является основным принципом индукционных нагревателей воды, а также большинства современных котлов.

Применение силы индукции для обогрева

Нагревательные приборы, использующие в основе своего функционирования электроэнергию, определенно являются наиболее удобными и максимально комфортными при эксплуатации. Их безопасность гораздо выше, нежели у оборудования, которое работает от газа. Кроме того, данные устройства не оставляют как остаточные продукты своего функционирования сажи и копоти.

Главным недостатком таких приборов, пожалуй, можно назвать, высокий расход электроэнергии. Для большей экономии народные мастера придумали, как самостоятельно изготавливать индукционные нагреватели. Как результат, получается агрегат, для функционирования которого требуется в разы меньше электричества.

Простой индукционный нагреватель 12 В

Простой индукционный нагреватель состоит мощного генератора высокой частоты и низкоомной катушки-контура, которая является нагрузкой генератора.

Генератор с самовозбуждением генерирует импульсы на основании резонансной частоты контура. В результате в катушке возникает мощное переменное электромагнитное поле частотой порядка 35 кГц.

Если в центр этой катушки поместить сердечник из токопроводящего материала, то внутри него возникнет электромагнитная индукция. В результате частой смены эта индукция вызовет в сердечнике вихревые токи, которые в свою очередь повлекут за собой выделение тепла. Это классический принцип преобразования электромагнитной энергии в тепловую.

Индукционные нагреватели очень давно используются во многих областях производства. С их помощью можно делать закалку, бесконтактную сварку, и самое главное — точечный прогрев, а также плавление материалов.

Ресурс «Сантехник Портал» продемонстрирует вам схему простого низковольтного индукционного нагревателя, которая уже стала классической.

Еще больше упростим эту схему и стабилитроны «D1, D2» не будем устанавливать.

Элементы, которые понадобятся:

  1. Резисторы на 10 кОм – 2 шт.
  2. Резисторы на 470 Ом – 2 шт.
  3. Диоды Шоттки на 1 А – 2 шт.
  4. Полевые транзисторы IRF3205 – 2 шт.
  5. Индуктор «5+5» — 10 витком с отводом от середины. Чем толще провод, тем лучше.
  6. Дроссель – 25 витков на кольце из блока старого компьютера.
  7. Конденсатор 0,47 мкФ. Лучше набирать емкость несколькими конденсаторами и на напряжение не ниже 600 Вольт.

Изготовление простого индукционного нагревателя 12 В:

  1. Намотать индуктор.
  2. Собрать схему навесным монтажом, отделив колодкой индуктор от всей схемы.
  3. Конденсатор желательно располагать в непосредственной близости от выводов катушки.
  4. Транзисторы установить на радиаторы.
  5. Запитать всю установку от аккумулятора 12 Вольт.

Работает отлично. Лезвие канцелярского ножа нагревает до красноты очень быстро.

Транзисторы и сам индуктор греются, если работает постоянно. На небольшое время – не критично почти.

Схема и описание индукционного нагревателя на 500 Ватт

Схема индукционного нагревателя мощностью 500 Ватт, который можно собрать самостоятельно! В сети можно найти огромное множество данных схем, но они сразу же становятся неинтересны, так как в своем большинстве они либо абсолютно нерабочие, либо функционируют не так как ожидалось. Но приведенная схема индукционного нагревателя проверена и абсолютно рабочая, но ее главным плюсом является ее простота, которую по достоинству оценит каждый.

Компоненты и катушка:

В рабочей катушке самодельного индукционного нагревателя 5 витков, для намотки применяется медная трубка около 1 см диаметром, но можно использовать и трубку меньшего диаметра. Данный диаметр выбран не просто так, так как через трубку проходит вода для охлаждения транзисторов и катушки.

Можно использовать транзисторы IRFP150, если нет возможности найти IRFP250. Конденсаторы можно использовать пленочные емкостью 0,27 мкФ 160 Вольт, но если таких нет, подойдут и с емкостью 0,33 мкФ и выше. Стоит помнить, что схема запитывается напряжением до 60 Вольт, но в данном случае необходимо установить конденсаторы с напряжением 250 Вольт. В случае если схема подключается к питанию до 30 Вольт, то на 150 более чем достаточно.

Стабилитроны используются любые на 13-15 Вольт от 1 Ватта, к примеру, можно применять 1N5349 и похожие. Диоды можно применять типа UF4007 и им подобные. Резисторы на 470 Ом от 2-х Ватт.

В качестве радиаторов, можно применять медные пластины, припаиваемые напрямую к трубке, в виду того что в данной конструкции применяется водяное охлаждение. С профессиональной точки зрения, данный вид охлаждения является наиболее эффективным, в виду сильного нагревания транзисторов ни один вентилятор и никакие радиаторы не способны спасти их от перегревания.

Расположение охлаждающих пластин проходит таким образом, чтобы трубка катушка проходила через них. Пластины и трубка спаиваются друг с другом при помощи газовой горелки и большого паяльника для пайки автомобильных радиаторов.

Конденсаторы располагаются на двухстороннем текстолите, для более качественного охлаждения плату припаивают таким же образом напрямую к трубке катушки.

Дроссели наматываются на ферритовые кольца, как правило такие можно найти в компьютерном блоке питания, провод необходимо использовать медный изолированный.

Индукционный нагреватель в результате получится достаточно мощный, с легкость плавить алюминий и латунь, с железными деталями тоже справиться, но гораздо медленнее. Если были использованы транзисторы IRFP150, то по характеристикам схема может быть запитана напряжением до 30 Вольт, из-за этого мощность ограничена только данным фактором. Так что специалисты рекомендуют использовать транзистор IRFP250.

Основные правила и рекомендации

Данными системами рекомендуется пользоваться в закрытых отопительных контурах с принудительной циркуляцией теплоносителя. Можно данные устройства использовать с пластиковыми трубопроводами.

Котел необходимо установить так, чтобы между ним, стенами и другими устройствами, работающими от электричества, было не менее 30 см. От пола и потолка также должна быть соблюдена дистанция в 80 см.

Кроме того, специалисты настоятельно рекомендуют установить систему безопасности на индуктивный прибор за выходным патрубком. Для этого потребуется манометр, устройство сброса воздуха и подрывной клапан.

Таким образом, теперь вы знаете, как сделать индукционный нагреватель своими руками без лишних капиталовложений и хлопот. Данный агрегат будет служить верой и правдой ни один год, обогревая жилище. Схема сборки достаточно простая и ее монтаж займет всего пару часов.

Ссылка на основную публикацию
Adblock
detector